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The shape of telephone cord blisters
Yong Ni1, Senjiang Yu2, Hongyuan Jiang1 & Linghui He1

Formation of telephone cord blisters as a result of buckling delamination is widely observed in

many compressed film-substrate systems. Here we report a universal morphological feature

of such blisters characterized by their sequential sectional profiles exhibiting a butterfly shape

using atomic force microscopy. Two kinds of buckle morphologies, light and heavy telephone

cord blisters, are observed and differentiated by measurable geometrical parameters. Based

on the Föppl-von Kármán plate theory, the observed three-dimensional features of the

telephone cord blister are predicted by the proposed approximate analytical model and

simulation. The latter further replicates growth and coalescence of the telephone cord into

complex buckling delamination patterns observed in the experiment.
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D
etailed origins of postbuckling phenomena have been
a subject of discussions for several decades1. The buckles
usually involve multiple instabilities and exhibit

intriguing morphologies2,3. When a film deposited on a subs-
trate is subject to a large residual compression, it buckles
and delaminates away from the substrate, and the blisters
with straight-sided, circular, telephone cord (TC) or network-
like patterns are formed4,5. Predicting the shape of such blisters is
of scientific interest for stress-driven pattern formation and
important for avoiding structural failure in various film-substrate
systems4. Among various manifestations of this phenomenon,
the TC blister is the most frequently observed in many different
film-substrate systems5. This motivates a search to identify
universal features of TC blisters. Recently, TC formation has
been considered as a development from a secondary instability
of straight-sided or circular blisters. The instability condition
has been analytically addressed by the Föppl-von Kármán
(FvK) plate model6–9. Further, it has been found that the
TC blister can also grow with the appearance of sags by an
oscillatory process and its edge unnecessarily starts straight10,11.
So far, a convincing solution for the three-dimensional
(3D) TC blister morphology remains a challenge because of
limited methods for handling nonlinear elasticity of thin plate,
although a series of numerical models and experiments have
provided valuable insights into the morphological features of
TC blisters10–25.

The elegant instability analysis of a straight-sided blister
predicted a constant undulation-period-to-width ratio of the
TC buckle under the clamping boundary conditions close to
the experimental observation8. In addition, the ratio may be
not constant and change with the interfacial adhesion and
the film-to-substrate modulus ratio11–16. The zigzag undulation
feature of the TC buckle has been replicated by nume-
rical investigations5,15–19. A comprehensive study for the
3D TC morphology suggested that it could be approximately
viewed as a sequence of connected segments of a circular
buckle pinned at its centre12. However, such approxima-
tion predicted the ridge of the TC blister to be discontinuous,
different from our following refined experimental observations
wherein the ridge is continuous and its height is periodically
changing.

Here we aim to probe the 3D features of the TC morphology
using a combination of analytical model, numerical simulation
and atomic force microscopy (AFM) study. As shown in Fig. 1a,b,
two typical TC blister shapes, light and heavy TC blisters, can
be observed in compressed SiAlNx films on glass substrates.
Our experimental observation based on the optical images
in Fig. 1a,b indicates that the projected area of the delamination
zone of the TC blister is similar to the area swept by a segment of
width 2b perpendicularly to a sinusoidal centreline. We then
assume that the shape of the TC blister can thus be modelled
as the postbuckling morphology of the thin plate clamped
along such delamination boundary under equal biaxial residual
compression (Fig. 1c). An approximate analytical solution for
the shape of the TC blister is obtained in the following part.
We argue that the shape of the TC blister can be characterized
by several sectional profiles perpendicular to the centreline
of the delamination zone (Fig. 1c). In contrast to the fact that
the sectional profile of the straight-sided blister is always
symmetric, the corresponding profile of the TC blister becomes
asymmetric, dependent on the wavy amplitude of the centreline.
The sequential sectional profiles of the TC blister exhibit
a butterfly shape. Such geometric feature becomes more
significant in the case of larger waviness amplitude of the
centreline, corresponding to a transition from the light TC blister
to the heavy TC blister.

Results
Analytical solution to the 3D profile of TC blisters. We firstly
determine the 3D shape of the TC blister by solving the
FvK equations for a plate of thickness h clamped along
the delamination boundary in a curvilinear coordinate (Fig. 1c).
The centreline of the delamination zone is described by
r0 ¼ x;A sin 2px=lð Þ; 0½ �, where A and l are the amplitude and
the wavelength of the wavy centreline, respectively. The shape of
the TC buckles reflected by the profile of the mid-plane of the
thin plate after deformation can be expressed as

r ¼ x� xþ uð Þ sin y;A sin 2px=lð Þþ xþ uð Þ cos y;w½ � ð1Þ
where y (x) is defined as the angle between the tangential of
the centreline and x axis, (s, x) is a curvilinear coordinate, u(s, x)
is the displacement along x direction and w(s, x) is the deflection
of the plate. Here we have assumed that the displacement
change along the S direction is negligible compared to u(s, x)
and w(s, x). The edges of the TC buckles are clamped at x¼±b.
We also assume that the in-plane displacement is small, that
is, u � x, u dy

ds � @u
@x, and the out-of-plane deflection is relatively

large. Based on the observed morphology of the TC buckles,
we make another important assumption that u and w change
slowly in the S direction, that is, @u

@s � @u
@x and @w

@s � @w
@x.

We derive the FvK equations with the boundary condition in
the curvilinear coordinate by minimizing the total elastic energy
in the plate (see the details in the Supplementary Note 1 for
the analytical solution to the TC buckle). The strain energy of the
TC buckle within a period can be written as

F ¼
Z s0

0

Z b

� b
f
ffiffiffi
g
p

d xds ð2Þ

where g is the determinant of the metric tensor gab and thereforeffiffiffi
g
p

dxds is the element of the area, f is the elastic strain energy
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Figure 1 | Schematic model for the shape of telephone cord blisters.

Fitting the projected area of (a) a light TC blister and (b) a heavy TC blister

observed in SiAlNx films on glass substrates. (c) Sketch of the FvK model in

a curvilinear coordinate under the clamping boundary condition along the

boundary of the projected area. Scale bars in (a) and (b) are 30 and 50mm,

respectively.
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density per unit area having the form

f ¼ h
2

Dabrmgabgrmþ
h3

24
DabrmDkabDkrm ð3Þ

where gab, Dkab and Dabrm are defined as the mid-plane Lagrange
strain tensor, the curvature change tensor due to deformation
and the tensor of the elastic constants in the curvilinear coordi-
nate, respectively. They can be explicitly expressed as a function
of the variables s, x, u and w. Here the prime denotes
differentiation with respect to x. If we only keep the leading order
term of u0 þ 1

2 w0ð Þ2, the element of area
ffiffiffi
g
p � 1� xy;s with

y;s ¼ �Aq2 sin qxð Þ
1þA2q2 cos2 qxð Þ½ �3=2. The arc length of the centreline s(x) is

given by ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA2q2 cos2 qxð Þ

p
dx, with q¼ 2p/l. We also

assume that s¼ 0 at x¼ 0 and s¼ s0 at x¼ 2p/q. From
dF=du ¼ 0, we have the in-plane equilibrium equation of the
plate

t0a ¼ 0 ð4Þ
where ta ¼ �Ef h

ffiffiffi
g
p

1þ nð Þemþ u0 þ 1
2 w0ð Þ2

� �
is the membrane

stress along the direction of x in the film. �Ef ¼ E
1� n2 is plane strain

modulus with E, v the Young’s modulus and the Poisson’s ratio of
the plate, respectively. em is the uniform equibiaxial residual
strain in the plate. Equation (4) indicates the membrane stress ta

should be a constant. Similarly, from dF=dw ¼ 0 we obtain the
out-of-plane equilibrium equation of the plate

1� xy;s
� �

w00
� �00 � lw0 þ

y2
;s

1� xy;s
w0

" #0
¼ 0 ð5Þ

where l ¼ 12ta
�Ef h3. By solving equations (4) and (5) as an eigenvalue

problem, we get an approximate solution to the deflection of the
plate up to the first order

wðx; xÞ � w0
1
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y;sx
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1þ cos
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p
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� �

ð6Þ
where w0 is an unknown constant. Equation (6) is reduced to
wðx; xÞ ¼ 1

2 w0 1þ cos p
b x
� �� �

for the buckling of a straight strip
with uniform width (y,s¼ 0) (ref. 6). Therefore, w0 represents
the maximum deflection of the plate when y,s¼ 0. Note that
ta ¼ �

�Ef h3

12
p
b

� �2
at y,s¼ 0. Integrate this equation from � b to b,

and notice that u¼ 0 at x¼±b, one can get

w2
0 ¼ �

640 12b2em 1þ nð Þþ h2p2½ �
480p2þ � 465� 110p2þ 16p4ð Þb2y2

;s

ð7Þ

The characteristic shape of TC blisters. Equation (6) together
with equation (7) provides for the first time an approximate
analytical solution to the 3D profile of the TC buckle after the
specific delamination area is available. To test whether the
solution can predict the 3D feature of the TC blister shape or
not, Fig. 2 plots several sectional profiles of a buckled tantalum
(Ta) film on glass substrates perpendicular to the centreline
shown in the inserted modified AFM image with the size
of 40 mm� 40 mm. The result in Fig. 2 shows that the sequence
of the sectional profiles of the TC blister perpendicular to the
centreline exhibits a butterfly shape reminiscent of the butterfly
curve of strain versus applied load in shape memory alloys.
The asymmetry is characterized by two different half-separations
denoted by b1 and b2 based on the ridge line of the TC blister
(see Fig. 1c). The asymmetry has a maximum in the profile along
B-line or D-line, while the profile along the C-line is symmetric.
In addition, the maximum deflection in each sectional profile
corresponding to the point at the ridge line is not constant. It
has the smallest value in the profile along the C-line and the

largest value in the profile along the B-line or D-line. This
geometric feature of the TC blister is different from the previous
report12 wherein the ridge line is viewed as a discontinuous
contour line. Figure 2 demonstrates that the theoretical result
obtained by equation (6) predicts the asymmetric 3D feature
of the TC blister, and the deflection amplitude variation of the
TC ridge line. This is consistent with the AFM measurements
after the measured parameters of the buckled Ta film is given
as h¼ 225 nm, b¼ 10mm, l/b¼ 2, A/l¼ 0.08, and the residual
strain in the Ta film is assumed to be em¼ 0.004. The deflection
amplitude of the ridge line given by equation (6) is under-
estimated because of the assumption of rigid substrate and
clamping boundary condition. In fact, the substrate compliance
could increase the maximum deflection26. We further numeri-
cally track the postbuckling morphology of the compressed plate
on the substrate by setting the same predelamination zone, the
same residual stress and the same other material parameters as
those in the case of the analytical solution. The film-to-substrate
modulus ratio is set to be 2.5 (about 70 GPa for the glass substrate
and 175 GPa for Ta film) based on the continuum model15. The
numerical result in Fig. 2 matches the experimentally observed
morphological feature of the TC blister even more closely.

The approximate solution in equation (6) also predicts the
asymmetry denoted by b1/b2 and the variation of the maximum
deflection at the ridge of the TC blister denoted by wmax

C�line=wmax
B�line

as a function of the waviness of the centreline denoted by A/l. In
the limit of A/l¼ 0, b1/b2¼ 1 and wmax

C�line=wmax
B�line ¼ 1, it is the

case of a straight-sided blister. The stability analysis for the
straight-sided blister only predicted the onset stage during
formation of the TC blister, namely, the amplitude of the
undulation is infinitely small corresponding to A/l-0 (ref. 8).
The current solution can apply to the case with finite value of A/l.
Figure 3 shows that different undulatory shapes of the TC blisters
can be described by two measurable geometrical parameters b1/b2

and wmax
C�line=wmax

B�line as a function of A/l with the comparison
between theory, simulation and experimental observations in
various films including Ta, SiAlNx, Fe and Ni on glass substrates.
With the increase of A/l, the values of b1/b2 and wmax

C�line=wmax
B�line

more significantly deviate from one, corresponding to the larger
asymmetry. However, we must note that the approximate
analytical solution is reliable only when the value of A/l is very
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Figure 2 | Characterization of the TC blister shape. Several sectional
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small since it proceeds by an asymptotic expansion in y,s (see the
details in the Supplementary Note 1 for analytical solution to
the TC buckle). From equation (5) it indicates that the solution
may be questionable since there is a singularity as 1� xy;s¼ 0.
The singularity disappears when A=lo1= 2p2ð Þ ¼ 0:05 at l¼ 2b.
For the larger value of A/l, the numerical solution15 is more close
to the experimental data, as shown in Fig. 3. It is found that the
variations of b1/b2 and wmax

C�line=wmax
B�line tend to be saturated,

respectively, after A/l40.08, in contrast to the monotonous
deviation from one predicted by the approximate analytical
solution. The result in Fig. 3 thus demonstrates that b1/b2 and
wmax

C�line=wmax
B�line are another two measurable geometric parameters

to characterize the undulatory morphology of the TC blister
beside of l/b and A/l. The dependence of b1/b2 and
wmax

C�line=wmax
B�line on A/l is attributed to the fact that the wavy

centreline of the delamination zone breaks the symmetry

with respect to the straight centreline and introduces a
position-dependent curvature as indicated in Supplementary
Equation (10) in the buckled film wherein the buckling across the
centreline may be not symmetric anymore.

Light and heavy TC blisters. Figure 4 demonstrates that there are
two kinds of buckle morphologies, light and heavy TC blisters,
differentiated by the value of A/l. The upper row in Fig. 4 is
the experimental observation in Ta and SiAlNx films on
glass substrates, respectively. The lower row in Fig. 4 is the
simulated postbuckling morphology given b/h¼ 49, l/b¼ 2 and
em ¼ 0:005 at different values of A/l. It is found that with the
increase of A/l, the buckle really turns out to be ubiquitously
undulated from light to heavy TC blisters. The obtained result
is consistent with the experimental observation shown
in Supplementary Movie 1, where an initially straight blister
progressively grows into the familiar TC structure. We believe
that the transition point between the light and heavy TC blisters
depends on the value of A/l. In the light TC blister, the value of
A/l is very small, the width of the delamination area is close to
2b, the delamination boundary is smooth and the values of b1/b2

and wmax
C�line=wmax

B�line monotonously deviate from one. In contrast,
in the heavy TC blister, the value of A/l is much larger, the
delamination zone significantly widens, the values of b1/b2

and wmax
C�line=wmax

B�line are saturated, and the delamination boundary
shows a cusp indicating the existence of a singularity
(see Supplementary Fig. 3).

In our analytical approach, l/b and A/l extracted from
the projected area of the TC blister are assumed to be the input
parameters instead of the prediction. Based on the assumption,
the equilibrium values of b1/b2 and wmax

C�line=wmax
B�line that quantify

the typical 3D features of the TC blister are determined by
the postbuckling solution given delamination area. We can
obtain the values of l/b and A/l from the experimental
observation. The measurement of l/b is straightforward12.
While the measurement of A/l could be obtained by tracking
the undulation of the ridge line denoted by A0=l, which value
could be roughly viewed as that of A/l (Fig. 1a,b). The results
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shown in Supplementary Fig. 2 indicate that both values
of l/b and A0=l in various observed TC blisters tend to be
saturated and fall into a narrow range. The value of the former is
between 1.6 and 2.8, consistent with the report in the literature16.
The value of the latter is between 0.1 and 0.3. Since the TC blister
can be developed from a secondary buckling instability of
a straight-sided blister, where the instability mode predicts
l/bE2 given the parameters b and A¼ 0 (ref. 8), we believe that
the waviness period of the TC blister may be inherited from the
instability wavelength. The deviation from l/bE2 is attributed
that l/b also depends on the adhesion with a non-trivial
relationship14,16. Usually the increase of A/l releases more the
elastic energy in the biaxially compressed film deposited on the
substrate, while it has to increase the mixed-mode-dependent
adhesion energy. The competition between them sets the
equilibrium value of A/l. In addition, large value of A/l in the
TC blisters is hard to report. It is possible because the case with a
large value of A/l definitely increases the stress concentration
which may lead to ridge crack20 or further buckling bifurcation,
and the buckle is not TC blister any more15.

Up to now, our modelling to the shape of the TC blister
is obtained under the particular assumption on the shape of
the delamination region. In fact, the delamination area is
unnecessary to be sinusoidal shaped, especially during the
oscillatory growth process of the TC blister11. Usually,
determination of the buckle–delamination morphology can be
separated into two steps. The first step is to derive a postbuckling
solution given the delamination zone. The second step is to
determine the delamination zone at equilibrium. If the edge of
the delamination zone is described as the interfacial crack front,
the delamination zone at equilibrium is determined as
the buckling-mediated energy release rate is equal to the
interface toughness. For the straight-sided blister, both steps are
done analytically6. However, the analytical solution to the second
step for the TC blister is not available.

In fact, both the equilibrium delamination area and postbuck-
ling morphology in thin films deposited on substrates can also
be theoretically determined in principle. If we further take
into account the contribution of the adhesion energy and the
elastic strain energy in the substrate, all the equilibrium values
of l/b, A/l, b1/b2 and wmax

C�line=wmax
B�line that quantify the TC blister

shape with less restriction can be numerically determined
by minimizing the total free energy in the film-substrate system.
Our current numerical simulations rely on the recently developed
continuum modelling to track the general morphological
evolution of the buckle delamination without any restriction
of the delamination zone15. In this approach, the concurrent
buckling and delaminating processes are formulated using
the time-dependent Ginzburg–Landau kinetic equations, driven
by minimizing the film-substrate total free energy, including
the elastic energies in both the film and the substrate, and
the mixed-mode interfacial adhesion between them11,15.
The effect of substrate elasticity and interfacial adhesion on the
shape of the TC blister can be taken into account, which is
neglected in the analytical approach. The modelling and
simulation approach is outlined in Supplementary Note 3 and
some results are shown in Supplementary Figs 4–6.
The coupling behaviour between buckling and delamination
in a film deposited on substrates with higher compressive stresses
becomes more complex20,22, and the TC blister may exhibit
beyond the sinusoidal configuration. Our numerical simula-
tions not only recover the growth process of the TC blister
from an initially circular blister7 but also capture a rich
coalescence behaviour accompanied with the increase of the
buckling width during further propagation of the TC buckle.
The TC buckle becomes larger and larger with the appea-

rance of several spikes and/or daughter TC buckle at the
outer undulated edge, consistent with our experimental
observation (see Supplementary Fig. 6 and Supplementary
Movies 2 and 3).

Discussion
In summary, the refined 3D morphological features of the
TC buckle are elucidated by using AFM characterization,
approximate analytical model and numerical simulations.
We confirm that the shape of the TC blister can be modelled
as the postbuckling morphology of the compressed plate clamped
along the delamination front given the parameters l/b and
A/l. Two measurable geometrical parameters b1/b2 and
wmax

C�line=wmax
B�line are proposed to characterize a so-called ‘butterfly

shape’ of the sequential sectional profiles, which are universal
in both the light and heavy TC blisters. The above features
are successfully reproduced by our approximate analytical
model and numerical simulations. Furthermore, how the fully
nonlinear buckle-driven delamination process leads to the
morphological evolution of the TC blister is captured by
numerical simulations and experimental observation. The present
work provides insight into the 3D shape of TC buckles.

Methods
Formation of the TC buckle as a result of the buckle-driven delamination
process was simulated using the phase field method where the film buckles into
an equilibrium buckle–delamination configuration driven by minimizing the total
free energy. The total free energy of the film-substrate system is established by
incorporating Green function method for the substrate elasticity, FvK plate theory
for nonlinear film deformation and cohesive zone model for mixed-mode
interfacial adhesion. The total free energy of the film-substrate system including the
film, the substrate and the interface can be expressed as a functional of the out-of-
plane displacement of the film z(x, t) and the displacement jump vector across the
interface L x; tð Þ as U tot ¼ U film þU sub þU int; where Ufilm is the elastic strain
energy including the bending and stretching energies in the film, Usub is the elastic
energy of the substrate and Uint is the adhesion energy between the film and the
substrate. Their detailed expressions are found in ref. 15. Following ref. 11, we may
also adopt alternative cohesive zone model with bilinear traction versus separation
law for better description of mixed-mode dependence of interface adhesion. The
dynamic equations for z;Li denoted as the time-dependent Ginzburg–Landau
kinetic equations to describe the minimization process of the total free energy are
given by: @z=@t ¼ �GzdU tot=dz and @Li=@t ¼ �GLidU tot=dLi , where t denotes
time and Gz , GLi are the kinetic coefficients that characterize the relaxation rates of
the buckling and delamination processes in the overdamped dynamics. This
gradient flow form of the dynamics guarantees a monotonous minimization
process of Utot and ensures a convergent solution of the dynamic equations,
whose steady-state solutions provide the configuration at the equilibrium. We solve
the reduced forms in a computational cell with periodic boundary conditions
using input parameters: e0

ab, mf =ms, vf ¼ 0:3, vs ¼ 0:5, G�Li
¼ G�Li

=Gz ¼ 0:1,
dn ¼ dt ¼ 0:2h, g�n ¼ gn=ednms and g�t ¼ gt=ednms . The grid spacing is
Dx ¼ Dy ¼ h and the time step is Dt ¼ 0:1t=t, with t ¼ h=Gzms. A small random
fluctuation mimicking the thermal fluctuation is used to facilitate nucleation of
buckling delamination from the pre-existing interfacial delamination region, in
which zero interface toughness is assumed.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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Supplementary Figure 1. sketch of the FvK model in a curvilinear coordinate under 

the clamping boundary condition along the boundary of the projected area. 
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(a) 

 

(b) 

 

Supplementary Figure 2. Plot of /A   and  / 2b  as a function of   in 

various TC blister buckles 
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Supplementary Figure 3. Plot of the side undulation curve under different 

values of /A    
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Supplementary Figure 4. The simulated contour map of the post-buckling 

morphology under different value of /A   from 0 to 0.38 with the increase of 0.02  
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Supplementary Figure 5. Effect of the modulus ratio between film and 

substrate on the shape of TC blister 
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Supplementary Figure 6. The growth of a TC blister obtained by numerical 

simulation 
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Supplementary Note 1: Analytical solution to the telephone cord buckle 

 

As shown Supplementary Figure 1, the centerline of the telephone cord can be given 

by  0 , sin 2 / ,0x A x    r  where A  and   are the amplitude and wavelength 

of the centerline, respectively. The tangent vector of the centerline is 

 0 1, cos ,0
d

Aq qx
dx

   
r

 with 2 /q   . Therefore, the distance between the two 

nearby points is  

  2 2 2 2 20 0 1 cos
d d

ds A q qx dx
dx dx

     
r r

 (S.1) 

Define the angle ( )x  between the tangential of the centerline and x  axis so that 

 
 

 

 

2 2 2

2 2 2

1
cos

1 cos

cos
sin

1 cos

dx

ds A q qx

Aq qxdy

ds A q qx





 


 


 (S.2) 

Therefore, the shape of the telephone cord buckles can be described as 

      sin , sin cos ,x u A qx u w         r  (S.3) 

where  ,s   is a curvilinear coordinate and  ,u s  is the displacement along   

direction and  ,w s   is the deflection of the plate. Here, we have assumed that the 

displacement along the s  direction is negligible compared to  ,u s   and  ,w s  . 

The edge of the telephone cord buckles are clamped at b   . By considering Eq. 

(S.2), the local tangential vectors can be written as  

 

   1

2

1 cos sin , 1 sin cos ,

1 sin , 1 cos ,

d u d u w
u u

s ds s ds s s

u u w

 
     

 
   

        
                  

       
        
       

r
m

r
m

(S.4) 

In this work, we assume the in-plane displacement is small, i.e., u   and 
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d u
u

ds








, and the out-of-plane deflection is relatively large. From the morphology 

of telephone cord buckles, we make another important assumption that u  and w  

change slowly in the s  direction, i.e., 
u u

s 

 

 
 and 

w w

s 

 

 
. Therefore, the two 

tangential vectors can be simplified to 

 
   

   

1 , ,

2

1 cos , 1 sin ,0

1 sin , 1 cos ,

s s

u u w

   

 

    

       

m

m
 (S.5) 

where 
,s

d

ds


  , 

u
u




 


 and 

w
w




 


. Here the prime denotes differentiation with 

respect to  . The metric tensor in the deformed film is given by 

 
 

   

2

,

2 2

1 0

0 1

s
g

u w
  

 
   
    

m m  (S.6) 

Similarly, we can calculate the tangential vectors and therefore obtain the metric 

tensor in the undeformed film as 

 
 

2

,1 0

0 1

sg

 
  
  

 (S.7) 

The mid-plane Lagrange strain tensor defined as 

  
 

 

2

,

2

1 0
1

12 0
2

m s

m

m

g g g
u w

   

 

 


 
 

     
   

 

 (S.8) 

where m  is the uniform equi-biaxial mismatch stress. Here we have used the 

assumption that 1u . The corresponding mixed component of the mid-plane 

Lagrange strain tensor is  

 
 

2

0

1
0

2

m

m

g
u w

 

 



 


 
  
   
 

 (S.9) 
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where g 
 is the inverse of the metric tensor in the undeformed film, i.e., 

g g 

  .  The curvature tensors in the deformed and undeformed film are 

 
 , ,1 0

and 0
0

s sw

w
 

 
 

  
  

  

 (S.10) 

Therefore, the curvature change tensor is  

 
 , ,1 0

0

s sw

w
  

 
  

  
     

  

 (S.11) 

So the Lagrange strain tensor is defined as 

 
3E x       (S.12) 

with two nonzero components as 

 

   

 

2

11 , 3 , ,

2

22 3

1 1

1

2

m s s s

m

E x w

E u w x w

   



   

     
 (S.13) 

where 3x  is the distance from the mid-plane of the film. The tensor the elastic 

constants can be defined as 

   2
1 2

2(1 )

E
D g g g g g g       


    
 

 (S.14) 

where E  and   are the Young's modulus and Poisson's ratio, respectively. The 

three nonzero components of D
 are 

 

 

 

 

 

2
11

1111

42 2

,

2
22

2222

2 2

11 22
1122

22 2

,

1

1 1 1

1 1

1

1 1 1

s

s

E g E
D

E g E
D

Eg g E
D

  

 

 

  

 
  

 
 

 
  

 (S.15) 

The stress-resultant tensor and the internal moment tensor are 



10 
 

 3

12

T hD

h
M D

 



 









 
 (S.16) 

Therefore, the elastic strain energy density per unit area is 

    

 

 
 

3

2
2 22

2

2
3

2, ,

22

,,

2 24

1 1
2

2 1 2 2

2

24 1 11

m m m m

s s

ss

h h
D D

h E
u w u w

w w wh E
w

 

       

   


 

 

   

     
                   

   
   

   

 (S.17) 

The stain energy of the telephone cord buckles within a period is  

 
0

0

s b

b
gd ds 


     (S.18) 

where g is the determinant of the metric tensor g  and therefore gd ds  is the 

element of the area. If we only keep the leading order term of  
21

2
u w  , the 

element of  area ,1 sg   . The arc-length of the centerline  s x  is given by 

 2 2 21 cosds A q qx dx  . We also assume that 0s   at 0x   and 0s s  at 

2 /x q . From the principle of minimum potential energy, we can obtain the 

equilibrium equations.  From / 0u   , we have  

 0at
   (S.19) 

where    
21

1
2

a f mt E h g u w 
 

     
 

 is the in-plane normal force in the film.   

21
f

E
E





 is plane strain modulus. Eq. (S.19) indicates the in-plane normal force 

at  should be a constant. Similarly, from / 0w    we obtain another differential 

equation 

  
2

,

,

,

1 0
1

s

s

s

w w w


 


            

 (S.20) 
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where 
3

12 a

f

t

E h
  . Apparently, this is an eigenvalue problem. Here, we seek a 

perturbative solution to Eq. (S.20) of the form 

 

(0) (1)

,

(0) (1)

,

n n s n

n n s nw w w

   



  

  
 (S.21) 

where n  and nw  are the n-th eigenvalue and eigenfunction of Eq. (S.20).  

Substituting Eq. (S.21) into Eq. (S.20) and comparing the power of 
,s  gives the 

following sequence of equations:  

 
4 (0) 2 (0)

(0)

4 2
0n n

n

w w


 

 
 

 
 (S.22) 

 

4 (1) 2 (1) 2 (0) 2 (0)2
(0) (1)

4 2 2 2 2

n n n n
n n

w w w w
  

    

    
   

     
 (S.23) 

with boundary conditions  

 
( )

( ) 0 and 0 at
i

i n
n

w
w b




   


 (S.24) 

Eq. (S.22) is the zeroth order approximation of the problem. In this case, the 

centerline is a straight line (
, 0s  ). The eigenvlaue and eigenfunciton of Eq. (S.22) 

are  

 

2

(0)

n

n

b




 
  

 
 (S.25) 

  
1(0) 1

1 cos
3

n

n

n
w

bb




  
     

  
 (S.26) 

(0)

nw  form an orthonormal basis, i.e.,  

 
(0) (0)

1 ( )

0 ( )

b

m n
b

m n
w w d

m n





 


  (S.27) 

By multiplying Eq. (S.23) by (0)

mw  and integrating it from b  to b , one can find  
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2 (0)2
(0)

2 2

(1)

2 (0)
(0)

2

0

b
n

n
b

n
b

n
n

b

w
w d

w
w d

 
 










 
 

    








 (S.28) 

when m n . By substituting (1) 0n   into Eq. (S.23) and solving the equation 

directly, one can get  

    (1) 2 2 (0)

0

1
1 cos sin

4 3

n

n n

n n n
w b C w

b b bb

  
   
     

          
     

 (S.29) 

where 0C  is an unknown constant. By multiplying Eq. (S.23) by (0)

mw  ( m n ) and 

integrating it from b  to b , one can find  

  
2 (0)

(0) (0) (1)

2
0

b
m

n m n
b

w
w d  




 

  (S.30) 

Notice that (0) (0)

n m   when m n . Therefore, we get 
2 (0)

(1)

2
0

b
m

n
b

w
w d






 , which 

indicates 0 0C  . Therefore, when 1n  , we get an approximation of the deflection 

of the plate as  

  2 2

0 , ,

1 1
( , ) 1 1 cos sin

2 4 4
s sw x w b

b b b

  
      

       
           

       
 (S.31) 

where 0w  is an unknown constant. Eq. (S.31) is reduced to 

0

1
( , ) 1 cos

2
w x w

b


 

  
    

  
 for the buckling of a straight strip with uniform width 

(
, 0s  ). Therefore, 0w  represents the maximum deflection of the plate when 

, 0s  . 

Notice that    
23 3

2 11
1

2 12 12

f f

a f m

E h E h
t E h g u w

b

 
 

   
          

   
. Integrate 

this equation from b  to b , and notice that 0u   at b   , one can get 
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 

 

2 2 2

2
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   

 (S.32) 

Eq.(S.31) together with Eq.(S.32) provides an analytical solution to the 3D profile of 

the TC buckle after its projected area is available.  

 

Supplementary Note 2: Measurable /A   and / b in various TC blisters 

shown in Supplementary Figure 2 

We have measured the values of /A   and / b in various TC blisters 

according to the optical or AFM images reported in the literatures [1-27]. The values 

of /A   and / b  for each kind of materials are estimated as the average by 

several measurements. 

 

Supplementary Note 3: Method to simulate evolution of the telephone cord 

buckle 

Supplementary Figure 3 shows the side undulation curve under different values 

of /A   at b/h=49, 2/ b   to set the pre-delamination area in our numerical 

simulation.  

We perform the numerical simulation for the effect of /A   on the 

post-buckling morphology of the compressed plate on the substrate given the 

parameters
0

m    , 0.005m   / 2.5f s   , 0.3fv  , 0.5sv  , 

* / 0.01
i i       , b/h=49, 2/ b  , as shown in Supplementary Figure 4. The 

simulated result in Figure 3 about the dependence of 1 2/b b  and max max/C line B linew w 
 on 

/A   is extracted from the data in Supplementary Figure 4. 

Supplementary Figure 5 shows the effect of modulus ratio between film and 
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substrate on the post-buckling morphology of the compressed plate on the substrate 

given the parameters 0.005m  , 0.3fv  , 0.5sv  , , b/h=49, 2/ b  , / =0.08A  . 

It is found that the larger modulus ratio leads to larger energy releasing rate and 

maximum deflection of the TC blister. Interestingly, the asymmetry characterized by 

max max/C line B linew w 
 becomes weak as the substrate is compliant, i.e. / 20f s   . This 

may indicate that it does not always happens. More detailed study is needed in future. 

The simulated result in Supplementary Figure 6 is obtained by numerically 

solving the above outlined continuum model in a computational cell with periodic 

boundary conditions using input parameters: the cell size 2048h×2048h with an initial 

circular delamination nuclei of radius r=5h , 
0

m    , 0.022m   / 5f s   , 

0.3fv  , 0.5sv  , 
* / 0.01

i i       , 0.2n h  , t n  , 

/ 0.02n n n se       and / 0.1t t n se      . 
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